• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Kinetic modeling of microalgae growth and CO2 bio-fixation using central composite design statistical approach

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Almomani F.
    Metadata
    Show full item record
    Abstract
    The optimum growth (μ), CO2 bio-fixation (RCO2) rates and the energy ratio (ER) of microalgae Chlorella vulgaris (C.v) were identified using central composite design statistical approach (CCD-SA). μ and RCO2 parameters including temperature of photobioreactor (TPBR), concentration of CO2 (CCO2 ), nutrients (carbon, nitrogen and phosphorus), gas flow rate (Qgas), initial inoculum concentration (INden) and the solar light intensity (Itot) were considered. Results revealed mild operational conditions in the range 20–25 °C, CCO2 of 2.5–20% (v/v), Qgas of 0.5–0.8 vvm and Itot of 50–200 μE/m2·s would generate considerable μ and RCO2. The highest μ and RCO2 with a significant ER of 19.5 were generated under CCD-SA optimized parameters of T = 25 °C, CCO2 = 20%, Qgas = 0.5 ± 0.05 (Std. Dev. = 0.04) vvm, total inorganic nitrogen (TN) = 19 ± 2 (Std. Dev. = 0.1) mg-N/L, Total phosphorous = 7 ± 1 (Std. Dev. = 0.7) mg-P/L, COD = 20 ± 2 (Std. Dev. = 0.5) mg-COD/L, INden = 0.52 ± 0.01 (Std. Dev. = 0.05) mg/L and Itot = 150 ± 2(Std. Dev. = 0.6) μE/m2s). Microalgae technology can be considered as a promising technology for CO2 bio-fixation in a large scale with a sustainable value of the produced biomass for biofuel production.
    DOI/handle
    http://dx.doi.org/10.1016/j.scitotenv.2020.137594
    http://hdl.handle.net/10576/30326
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video