Prevention of barite sag in water-based drilling fluids by a urea-based additive for drilling deep formations
Abstract
Barite sag is a challenging phenomenon encountered in deep drilling with barite-weighted fluids and associated with fluid stability. It can take place in vertical and directional wells, whether in dynamic or static conditions. In this study, an anti-sagging urea-based additive was evaluated to enhance fluid stability and prevent solids sag in water-based fluids to be used in drilling, completion, and workover operations. A barite-weighted drilling fluid, with a density of 15 ppg, was used with the main drilling fluid additives. The ratio of the urea-based additive was varied in the range 0.25–3.0 vol.% of the total base fluid. The impact of this anti-sagging agent on the sag tendency was evaluated at 250 °F using vertical and inclined sag tests. The optimum concentration of the anti-sagging agent was determined for both vertical and inclined wells. The effect of the urea-additive on the drilling fluid rheology was investigated at low and high temperatures (80 °F and 250 °F). Furthermore, the impact of the urea-additive on the filtration performance of the drilling fluid was studied at 250 °F. Adding the urea-additive to the drilling fluid improved the stability of the drilling fluid, as indicated by a reduction in the sag factor. The optimum concentration of this additive was found to be 0.5–1.0 vol.% of the base fluid. This concentration was enough to prevent barite sag in both vertical and inclined conditions at 250 °F, with a sag factor of around 0.5. For the optimum concentration, the yield point and gel strength (after 10 s) were improved by around 50% and 45%, respectively, while both the plastic viscosity and gel strength (after 10 min) were maintained at the desired levels. Moreover, the anti-sagging agent has no impact on drilling fluid density, pH, or filtration performance
Collections
- Chemical Engineering [1172 items ]
- GPC Research [494 items ]