• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A diversity compression and combining technique based on channel shortening for cooperative networks

    Thumbnail
    Date
    2012
    Author
    Hussain S.I.
    Alouini M.-S.
    Hasna , Mazen
    Metadata
    Show full item record
    Abstract
    The cooperative relaying process with multiple relays needs proper coordination among the communicating and the relaying nodes. This coordination and the required capabilities may not be available in some wireless systems where the nodes are equipped with very basic communication hardware. We consider a scenario where the source node transmits its signal to the destination through multiple relays in an uncoordinated fashion. The destination captures the multiple copies of the transmitted signal through a Rake receiver. We analyze a situation where the number of Rake fingers N is less than that of the relaying nodes L. In this case, the receiver can combine N strongest signals out of L. The remaining signals will be lost and act as interference to the desired signal components. To tackle this problem, we develop a novel signal combining technique based on channel shortening principles. This technique proposes a processing block before the Rake reception which compresses the energy of L signal components over N branches while keeping the noise level at its minimum. The proposed scheme saves the system resources and makes the received signal compatible to the available hardware. Simulation results show that it outperforms the selection combining scheme.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857372913&doi=10.1109%2fTWC.2011.121911.101960&partnerID=40&md5=c8e7111cb0abe8a2a1c97b87dbcd27af
    DOI/handle
    http://dx.doi.org/10.1109/TWC.2011.121911.101960
    http://hdl.handle.net/10576/30536
    Collections
    • Electrical Engineering [‎2850‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      A Deep Learning Model for LoRa Signals Classification Using Cyclostationay Features 

      Almohamad A.; Hasna , Mazen; Althunibat S.; Tekbiyik K.; Qaraqe K. ( IEEE Computer Society , 2021 , Conference)
      With the witnessed exponential growth of Internet of Things (IoT) nodes deployment following the emerging applications, multiple variants of technologies have been proposed to handle the IoT requirements. Among the proposed ...
    • Thumbnail

      An improved method for nonstationary signals components extraction based on the ICI rule 

      Lerga, J; Sucic, V; Boashash, B ( IEEE , 2011 , Conference)
      This paper proposes an improved adaptive algorithm for components localization and extraction from a noisy multicomponent signal time-frequency distribution (TFD). The algorithm, based on the intersection of confidence ...
    • Thumbnail

      Multiple-view time-frequency distribution based on the empirical mode decomposition 

      Stevenson, N.J; Mesbah, M; Boashash, B ( Institution of Engineering and Technology , 2010 , Article)
      This study proposes a novel, composite time-frequency distribution (TFD) constructed using a multiple-view approach. This composite TFD utilises the intrinsic mode functions (IMFs) of the empirical mode decomposition (EMD) ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video