• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Self-organized Operational Neural Networks with Generative Neurons

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Kiranyaz, Mustafa Serkan
    Malik J.
    Abdallah H.B.
    Ince T.
    Iosifidis A.
    Gabbouj M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Operational Neural Networks (ONNs) have recently been proposed to address the well-known limitations and drawbacks of conventional Convolutional Neural Networks (CNNs) such as network homogeneity with the sole linear neuron model. ONNs are heterogeneous networks with a generalized neuron model. However the operator search method in ONNs is not only computationally demanding, but the network heterogeneity is also limited since the same set of operators will then be used for all neurons in each layer. Moreover, the performance of ONNs directly depends on the operator set library used, which introduces a certain risk of performance degradation especially when the optimal operator set required for a particular task is missing from the library. In order to address these issues and achieve an ultimate heterogeneity level to boost the network diversity along with computational efficiency, in this study we propose Self-organized ONNs (Self-ONNs) with generative neurons that can adapt (optimize) the nodal operator of each connection during the training process. Moreover, this ability voids the need of having a fixed operator set library and the prior operator search within the library in order to find the best possible set of operators. We further formulate the training method to back-propagate the error through the operational layers of Self-ONNs. Experimental results over four challenging problems demonstrate the superior learning capability and computational efficiency of Self-ONNs over conventional ONNs and CNNs.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103972773&doi=10.1016%2fj.neunet.2021.02.028&partnerID=40&md5=aee7a8cc47efef20bdafd78fc4a7b93f
    DOI/handle
    http://dx.doi.org/10.1016/j.neunet.2021.02.028
    http://hdl.handle.net/10576/30586
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Real-Time Patient-Specific ECG Classification by 1D Self-Operational Neural Networks 

      Malik J.; Devecioglu O.C.; Kiranyaz, Mustafa Serkan; Ince T.; Gabbouj M. ( IEEE Computer Society , 2021 , Article)
      Despite the proliferation of numerous deep learning methods proposed for generic ECG classification and arrhythmia detection, compact systems with the real-time ability and high accuracy for classifying patient-specific ...
    • Thumbnail

      Exploiting heterogeneity in operational neural networks by synaptic plasticity 

      Kiranyaz, Mustafa Serkan; Malik J.; Abdallah H.B.; Ince T.; Iosifidis A.; Gabbouj M.... more authors ... less authors ( Springer Science and Business Media Deutschland GmbH , 2021 , Article)
      The recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs) that are homogenous only with a linear neuron model. As a heterogenous network ...
    • Thumbnail

      Operational neural networks 

      Kiranyaz, Mustafa Serkan; Ince T.; Iosifidis A.; Gabbouj M. ( Springer , 2020 , Article)
      Feed-forward, fully connected artificial neural networks or the so-called multi-layer perceptrons are well-known universal approximators. However, their learning performance varies significantly depending on the function ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video