عرض بسيط للتسجيلة

المؤلفSoltanian M.
المؤلفMalik J.
المؤلفRaitoharju J.
المؤلفIosifidis A.
المؤلفKiranyaz, Mustafa Serkan
المؤلفGabbouj M.
تاريخ الإتاحة2022-04-26T12:31:18Z
تاريخ النشر2021
اسم المنشورProceedings of the International Joint Conference on Neural Networks
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/IJCNN52387.2021.9534232
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85116504348&doi=10.1109%2fIJCNN52387.2021.9534232&partnerID=40&md5=4fa7c2bfcd2d285a8af2fff44bdc753a
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30587
الملخصAutomatic classification of speech commands has revolutionized human computer interactions in robotic applications. However, employed recognition models usually follow the methodology of deep learning with complicated networks which are memory and energy hungry. So, there is a need to either squeeze these complicated models or use more efficient lightweight models in order to be able to implement the resulting classifiers on embedded devices. In this paper, we pick the second approach and propose a network layer to enhance the speech command recognition capability of a lightweight network and demonstrate the result via experiments. The employed method borrows the ideas of Taylor expansion and quadratic forms to construct a better representation of features in both input and hidden layers. This richer representation results in recognition accuracy improvement as shown by extensive experiments on Google speech commands (GSC) and synthetic speech commands (SSC) datasets.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعAnthropomorphic robots
Deep learning
Human computer interaction
Network layers
Number theory
Speech recognition
Automatic classification
Classification of speech
Command recognition
Embedded device
Energy
Recognition models
Robotics applications
Self-organised
Speech commands
Taylor's expansion
Speech synthesis
العنوانSpeech Command Recognition in Computationally Constrained Environments with a Quadratic Self-Organized Operational Layer
النوعConference Paper
رقم المجلد2021-July
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة