• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    1D Convolutional Neural Networks Versus Automatic Classifiers for Known LPI Radar Signals under White Gaussian Noise

    Thumbnail
    Date
    2020
    Author
    Yildirim A.
    Kiranyaz, Mustafa Serkan
    Metadata
    Show full item record
    Abstract
    In this study we analyze the signal classification performances of various classifiers for deterministic signals under the additive White Gaussian Noise (WGN) in a wide range of signal to noise ratio (SNR) levels (-40dB to +20dB). The traditional electronic support measure (ESM) systems require high SNR for radar signal classification. LPI (low probability of intercept) radar signals that are received by ESM systems are usually corrupted by noise. So, we demonstrate through extensive simulations that it is possible to achieve high classification performance at low SNR levels providing that the underlying radar signals are known in advance. MF bank classifier, 1D Convolutional Neural Networks (CNNs) and the minimum distance classifier using spectral-domain features (the skewness, the kurtosis, and the energy of the dominant frequency) have been derived for the radar signal classification and their performances have been compared with each other and with the optimal classifier.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094183494&doi=10.1109%2fACCESS.2020.3027472&partnerID=40&md5=66427245d91c9cf730347129a1de9c20
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2020.3027472
    http://hdl.handle.net/10576/30614
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      A Deep Learning Model for LoRa Signals Classification Using Cyclostationay Features 

      Almohamad A.; Hasna , Mazen; Althunibat S.; Tekbiyik K.; Qaraqe K. ( IEEE Computer Society , 2021 , Conference)
      With the witnessed exponential growth of Internet of Things (IoT) nodes deployment following the emerging applications, multiple variants of technologies have been proposed to handle the IoT requirements. Among the proposed ...
    • Thumbnail

      Time-frequency features for pattern recognition using high-resolution TFDs: A tutorial review 

      Boashash B.; Khan N.A.; Ben-Jabeur T. ( Elsevier Inc. , 2015 , Article)
      This paper presents a tutorial review of recent advances in the field of time-frequency (t, f) signal processing with focus on exploiting (t, f) image feature information using pattern recognition techniques for detection ...
    • Thumbnail

      Time-frequency detection of slowly varying periodic signals with harmonics: Methods and performance evaluation 

      O'Toole J.M.; Boashash B. (2011 , Article)
      We consider the problem of detecting an unknown signal from an unknown noise type. We restrict the signal type to a class of slowly varying periodic signals with harmonic components, a class which includes real signals ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video