• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • علم وتكنولوجيا المواد
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • علم وتكنولوجيا المواد
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards stacking fault energy engineering in FCC high entropy alloys

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S135964542100851X-main.pdf (4.850Mb)
    التاريخ
    2022-02-01
    المؤلف
    Tasneem Z., Khan
    Kirk, Tanner
    Vazquez, Guillermo
    Singh, Prashant
    Smirnov, A.V.
    Johnson, Duane D.
    Youssef, Khaled
    Arróyave, Raymundo
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Stacking Fault Energy (SFE) is an intrinsic alloy property that governs much of the plastic deformation mechanisms observed in fcc alloys. While SFE has been recognized for many years as a key intrinsic mechanical property, its inference via experimental observations or prediction using, for example, computationally intensive first-principles methods is challenging. This difficulty precludes the explicit use of SFE as an alloy design parameter. In this work, we combine DFT calculations (with necessary configurational averaging), machine-learning (ML) and physics-based models to predict the SFE in the fcc CoCrFeMnNiV-Al high-entropy alloy space. The best-performing ML model is capable of accurately predicting the SFE of arbitrary compositions within this 7-element system. This efficient model along with a recently developed model to estimate intrinsic strength of fcc HEAs is used to explore the strength–SFE Pareto front, predicting new-candidate alloys with particularly interesting mechanical behavior.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S135964542100851X
    DOI/handle
    http://dx.doi.org/10.1016/j.actamat.2021.117472
    http://hdl.handle.net/10576/30807
    المجموعات
    • علم وتكنولوجيا المواد [‎341‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video