• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Smartphone-based food recognition system using multiple deep CNN models

    Thumbnail
    التاريخ
    2021
    المؤلف
    Fakhrou A.
    Kunhoth J.
    Al-Maadeed, Somaya
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    People with blindness or low vision utilize mobile assistive tools for various applications such as object recognition, text recognition, etc. Most of the available applications are focused on recognizing generic objects. And they have not addressed the recognition of food dishes and fruit varieties. In this paper, we propose a smartphone-based system for recognizing the food dishes as well as fruits for children with visual impairments. The Smartphone application utilizes a trained deep CNN model for recognizing the food item from the real-time images. Furthermore, we develop a new deep convolutional neural network (CNN) model for food recognition using the fusion of two CNN architectures. The new deep CNN model is developed using the ensemble learning approach. The deep CNN food recognition model is trained on a customized food recognition dataset.The customized food recognition dataset consists of 29 varieties of food dishes and fruits. Moreover, we analyze the performance of multiple state of art deep CNN models for food recognition using the transfer learning approach. The ensemble model performed better than state of art CNN models and achieved a food recognition accuracy of 95.55 % in the customized food dataset. In addition to that, the proposed deep CNN model is evaluated in two publicly available food datasets to display its efficacy for food recognition tasks.
    DOI/handle
    http://dx.doi.org/10.1007/s11042-021-11329-6
    http://hdl.handle.net/10576/31087
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • Thumbnail

      Automatic number plate recognition on FPGA 

      Zhai, Xiaojun; Bensaali, Faycal; McDonald-Maier, Klaus ( Institute of Electrical and Electronics Engineers Inc. , 2013 , Conference)
      Automatic Number Plate Recognition (ANPR) systems have become one of the most important components in the current Intelligent Transportation Systems (ITS). In this paper, a FPGA implementation of a complete ANPR system ...
    • Thumbnail

      Face Recognition in the Scrambled Domain via Salience-Aware Ensembles of Many Kernels 

      Jiang, Richard; Al-Maadeed, Somaya; Bouridane, Ahmed; Crookes, Danny; Celebi, M. Emre ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Article)
      With the rapid development of Internet-of-Things (IoT), face scrambling has been proposed for privacy protection during IoT-targeted image/video distribution. Consequently, in these IoT applications, biometric verification ...
    • Thumbnail

      Real-time optical character recognition on field programmable gate array for automatic number plate recognition system 

      Zhai, Xiaojun; Bensaali, Faycal; Sotudeh, Reza (2013 , Article)
      The last main stage in an automatic number plate recognition system (ANPRs) is optical character recognition (OCR), where the number plate characters on the number plate image are converted into encoded texts. In this ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video