• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CamNav: a computer-vision indoor navigation system

    Thumbnail
    التاريخ
    2021
    المؤلف
    Karkar A.G.
    Al-Maadeed, Somaya
    Kunhoth J.
    Bouridane A.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    We present CamNav, a vision-based navigation system that provides users with indoor navigation services. CamNav captures images in real time while the user is walking to recognize their current location. It does not require any installation of indoor localization devices. In this paper, we describe the techniques of our system that improve the recognition accuracy of an existing system that uses oriented FAST and rotated BRIEF (ORB) as part of its location-matching procedure. We employ multiscale local binary pattern (MSLBP) features to recognize places. We implement CamNav and conduct required experiments to compare the obtained accuracy when using ORB, the scale-invariant feature transform (SIFT), MSLBP features, and the combination of both ORB and SIFT features with MSLBP. A dataset composed of 42 classes was constructed for assessment. Each class contains 100 pictures designed for training one location and 24 pictures dedicated for testing. The evaluation results demonstrate that the place recognition accuracy while using MSLBP features is better than the accuracy when using SIFT features. The accuracy when using SIFT, MSLBP, and ORB features is 88.19%, 91.27%, and 96.33%, respectively. The overall accuracy of recognizing places increased to 93.55% and 97.52% after integrating MSLBP with SIFT with ORB, respectively.
    DOI/handle
    http://dx.doi.org/10.1007/s11227-020-03568-5
    http://hdl.handle.net/10576/31090
    المجموعات
    • علوم وهندسة الحاسب [‎2483‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • Thumbnail

      Novel Framework for Real Time Indoor Air Quality Monitoring Using IoT and Mobile Robotics 

      Al-Salahi, Mohammed; Mahmoud, Nafin; Ahmed, Jawairia; Darwish, Mariam; Ali, Fahad Abdelshafi; Thomas, Kevin; Rahman, Ahasanur; Khandakar, Amith... more authors ... less authors ( Qatar University Young Scientists Center - Qatar University , 2025 , Conference)
      Using IoT technology and mobile robotics, this study presents a novel framework for real-time indoor air quality monitoring, addressing the need for precise, flexible air checks in indoor environments. In order to construct ...
    • Thumbnail

      Breathing Clean Air: Navigating Indoor Air Purification Techniques and Finding the Ideal Solution 

      Alhussain, Hashim; Ghani, Saud; Eltai, Nahla O. ( MDPI , 2024 , Article)
      The prevalence of airborne pathogens in indoor environments presents significant health risks due to prolonged human occupancy. This review addresses diverse air purification systems to combat airborne pathogens and the ...
    • Thumbnail

      Comparative analysis of computer-vision and BLE technology based indoor navigation systems for people with visual impairments 

      Kunhoth J.; Karkar A.; Al-Maadeed S.; Al-Attiyah A. ( BioMed Central Ltd. , 2019 , Article)
      Background: Considerable number of indoor navigation systems has been proposed to augment people with visual impairments (VI) about their surroundings. These systems leverage several technologies, such as computer-vision, ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video