Enhancement of mechanical and corrosion resistance properties of electrodeposited NiP-TiC composite coatings
Date
2021Author
Fayyaz O.Khan A.
Shakoor R.A.
Hasan, Anwarul
Yusuf M.M.
Montemor M.F.
Rasul S.
Khan K.
Faruque M.R.I.
Okonkwo P.C.
...show more authors ...show less authors
Metadata
Show full item recordAbstract
In the present study, the effect of concentration of titanium carbide (TiC) particles on the structural, mechanical, and electrochemical properties of Ni–P composite coatings was investigated. Various amounts of TiC particles (0, 0.5, 1.0, 1.5, and 2.0 g L−1) were co-electrodeposited in the Ni–P matrix under optimized conditions and then characterized by employing various techniques. The structural analysis of prepared coatings indicates uniform, compact, and nodular structured coatings without any noticeable defects. Vickers microhardness and nanoindentation results demonstrate the increase in the hardness with an increasing amount of TiC particles attaining its terminal value (593HV100) at the concentration of 1.5 g L−1. Further increase in the concentration of TiC particles results in a decrease in hardness, which can be ascribed to their accumulation in the Ni–P matrix. The electrochemical results indicate the improvement in corrosion protection efficiency of coatings with an increasing amount of TiC particles reaching to ~ 92% at 2.0 g L−1, which can be ascribed to a reduction in the active area of the Ni–P matrix by the presence of inactive ceramic particles. The favorable structural, mechanical, and corrosion protection characteristics of Ni–P–TiC composite coatings suggest their potential applications in many industrial applications.
Collections
- Mechanical & Industrial Engineering [1396 items ]