• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The recent advances in the mechanical properties of self-standing two-dimensional MXene-based nanostructures: Deep insights into the supercapacitor

    Thumbnail
    View/Open
    nanomaterials-10-01916-v2.pdf (6.626Mb)
    Date
    2020
    Author
    Ibrahim, Yassmin
    Mohamed , Ahmed
    Abdelgawad, Ahmed M.
    Eid, Kamel
    Abdullah, Aboubakr M.
    Elzatahry, Ahmed
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    MXenes have emerged as promising materials for various mechanical applications due to their outstanding physicochemical merits, multilayered structures, excellent strength, flexibility, and electrical conductivity. Despite the substantial progress achieved in the rational design of MXenes nanostructures, the tutorial reviews on the mechanical properties of self-standing MXenes were not yet reported to our knowledge. Thus, it is essential to provide timely updates of the mechanical properties of MXenes, due to the explosion of publications in this filed. In pursuit of this aim, this review is dedicated to highlighting the recent advances in the rational design of self-standing MXene with unique mechanical properties for various applications. This includes elastic properties, ideal strengths, bending rigidity, adhesion, and sliding resistance theoretically as well as experimentally supported with various representative paradigms. Meanwhile, the mechanical properties of self-standing MXenes were compared with hybrid MXenes and various 2D materials. Then, the utilization of MXenes as supercapacitors for energy storage is also discussed. This review can provide a roadmap for the scientists to tailor the mechanical properties of MXene-based materials for the new generations of energy and sensor devices. 2020 by the authors. Licensee MDPI, Basel, Switzerland.
    DOI/handle
    http://dx.doi.org/10.3390/nano10101916
    http://hdl.handle.net/10576/31358
    Collections
    • Center for Advanced Materials Research [‎1482‎ items ]
    • GPC Research [‎501‎ items ]
    • Materials Science & Technology [‎315‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video