• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A novel desulfurization practice based on diesel acidification prior to activated carbon adsorption

    Thumbnail
    Date
    2015
    Author
    Al-Ghouti M.A.
    Al-Degs Y.S.
    Metadata
    Show full item record
    Abstract
    Commercial diesel is often rich with organosulfur compounds and a value of 7,100 mgS/kg was recently reported. As confirmed by chromatographic analysis, about 36% of sulfur compounds are originated from dibenzothiophene. Following uncommon desulfurization method, organosulfur compounds were efficiently removed upon diesel acidification by organic acids prior to activated carbon adsorption. Protonation of S-containing compounds has enhanced their uptake by activated carbon. Competitive adsorption of di/tri/tetra-aromatics and dibenzothiophene from synthetic fuel proved that the later solute was preferentially removed against other aromatics upon fuel acidification. Results showed that 48% of organosulfur compounds were eliminated upon adding acetic acid to a final content of 3% by vol. Principal component analysis indicated that acid content and carbon mass are the most significant factors on organosulfur compounds removal: %Removal=5.8 (Acid Content)+6.3 (Mass)-0.02 (PD)-0.90 (Temp). The practical efficiency of the proposed method was demonstrated by removing organosulfur compounds from commercial diesel.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940000358&doi=http://dx.doi.org/10.1007%2fs11814-014-0303-0&partnerID=40&md5=d084fe20d9c3c9be629e58d06bc5e0f0
    DOI/handle
    http://dx.doi.org/10.1007/s11814-014-0303-0
    http://hdl.handle.net/10576/31799
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video