• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A memetic algorithm for the bi-objective quadratic assignment problem

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2019
    المؤلف
    Cubukcuoglu C.
    Fatih Tasgetiren M.
    Sevil Sariyildiz I.
    Gao L.
    Kucukvar M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Recently, multi-objective evolutionary algorithms (MOEAs) have been extensively used to solve multi-objective optimization problems (MOPs) since they have the ability to approximate a set of non-dominated solutions in reasonable CPU times. In this paper, we consider the bi-objective quadratic assignment problem (bQAP), which is a variant of the classical QAP, which has been extensively investigated to solve several real-life problems. The bQAP can be defined as having many input flows with the same distances between the facilities, causing multiple cost functions that must be optimized simultaneously. In this study, we propose a memetic algorithm with effective local search and mutation operators to solve the bQAP. Local search is based on swap neighborhood structure whereas the mutation operator is based on ruin and recreate procedure. The experimental results show that our bi-objective memetic algorithm (BOMA) substantially outperforms all the island-based variants of the PASMOQAP algorithm proposed very recently in the literature.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082736327&doi=http://dx.doi.org/10.1016%2fj.promfg.2020.01.348&partnerID=40&md5=db35f855f481cfcec5a1732e6295f28d
    DOI/handle
    http://dx.doi.org/10.1016/j.promfg.2020.01.348
    http://hdl.handle.net/10576/31869
    المجموعات
    • الهندسة الميكانيكية والصناعية [‎1472‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video