• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016
    Author
    Boashash B.
    Ouelha S.
    Metadata
    Show full item record
    Abstract
    Time-frequency (TF) based machine learning methodologies can improve the design of classification systems for non-stationary signals. Using selected TF distributions (TFDs), TF feature extraction is performed on multi-channel recordings using channel fusion and feature fusion approaches. Following the findings of previous studies, a TF feature set is defined to include three complementary categories: signal related features, statistical features and image features. Multi-class strategies are then used to improve the classification algorithm robustness to artifacts. The optimal subset of TF features is selected using the wrapper method with sequential forward feature selection (SFFS). In addition, a new proposed measure for TF feature selection is shown to improve the sensitivity of the classifier (while slightly reducing total accuracy and specificity). As an illustration, the TF approach is applied to the design of a system for detection of seizure activity in real newborn EEG signals. Experimental results indicate that: (1) The compact kernel distribution (CKD) outperforms other TFDs in classification accuracy; (2) a feature fusion strategy gives better classification than a channel fusion strategy; e.g. using all TF features, the CKD achieves a classification accuracy of 82% with feature fusion, which is 4% more than the channel fusion approach; (3) the SFFS wrapper feature selection method improves the classification performance for all TFDs; e.g. total accuracy is improved by 4.6%; (4) the multi-class strategy improves the seizure detection accuracy in the presence of artifacts; e.g. a total accuracy of 86.61% with one vs. one multi-class approach is achieved i.e. 0.91% more than the binary classification approach. The results obtained on a large practical real data set confirm the improved performance capability of TF features for knowledge based systems
    DOI/handle
    http://dx.doi.org/10.1016/j.knosys.2016.05.027
    http://hdl.handle.net/10576/31904
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video