On the selection of time-frequency features for improving the detection and classification of newborn EEG seizure signals and other abnormalities
المؤلف | Boashash B. |
المؤلف | Boubchir L. |
تاريخ الإتاحة | 2022-05-31T19:01:38Z |
تاريخ النشر | 2012 |
اسم المنشور | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1007/978-3-642-34478-7_77 |
الملخص | This paper presents new time-frequency features for seizure detection in newborn EEG signals. These features are obtained by translating some relevant time features or frequency features to the joint time-frequency domain. A calibration procedure is then used for verification. The relevant translated features are ranked and selected according to maximal-relevance and minimal-redundancy criteria. The selected features improve the performance of newborn EEG seizure detection and classification systems by up to 4% for 100 real newborn EEG segments. |
اللغة | en |
الموضوع | Features selection Instantaneous frequency seizure Time frequency analysis Time frequency features Classification (of information) Data processing Error detection Signal detection Feature extraction |
النوع | Conference Paper |
الصفحات | 634-643 |
رقم العدد | PART 4 |
رقم المجلد | 7666 LNCS |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2649 items ]