• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • رسائل الماجستير وأطروحات الدكتوراه
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PARAMETRIC AND NONPARAMETRIC PORTMANTEAU TESTS FOR LACK OF FIT IN TIME SERIES MODELS: A COMPARATIVE STUDY

    Thumbnail
    عرض / فتح
    Muhammad Shaikh_OGS Approved Thesis.pdf (1.855Mb)
    التاريخ
    06-2022
    المؤلف
    SHAIKH, MUHAMMAD ARSHAD
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Several diagnostic tests for the lack of fit time series models have been introduced using parametric and nonparametric portmanteau tests. Some tests have been proposed based on the asymptotic distributions. Others are based on the Bootstrapping and Monte-Carlo significance techniques. It has been shown that the Bootstrapping and Monte-Carlo tests are robust as they provide the correct size and tend to be more powerful than those based on the asymptotic distributions. In this thesis, I conducted a comparison study of the size and power of some portmanteau tests commonly used in linear and nonlinear time series models. In particular, I considered the cases where the residuals follow Gaussian and non-Gaussian distribution under Autoregressive Moving Average (ARMA) and Generalized Autoregressive Heteroskedasticity (GARCH) models; where some parametric and nonparametric tests were applied based on the limiting distributions, Bootstrapping , and Monte-Carlo significance tests. The results show that the nonparametric Bootstrapping and Monte-Carlo significance tests provide the best performance comparing with tests based on the parametric asymptotic distribution. I applied the tests on a real application using the Qatar National Bank returns.
    DOI/handle
    http://hdl.handle.net/10576/32122
    المجموعات
    • الرياضيات والإحصاء والفيزياء [‎35‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video