Exact SINR analysis of OFDM systems under joint Tx/RX I/Q imbalance
Author | Ozdemir, Ozgur |
Author | Hamila, Ridha |
Author | Al-Dhahir, Naofal |
Available date | 2015-06-23T09:59:31Z |
Publication Date | 2013-09 |
Publication Name | IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC) 2013 |
Citation | Ozdemir, Ozgur; Hamila, Ridha; Al-Dhahir, Naofal, "Exact SINR analysis of OFDM systems under joint Tx/RX I/Q imbalance," Personal Indoor and Mobile Radio Communications (PIMRC), 2013 IEEE 24th International Symposium on , vol., no., pp.646,650, 8-11 Sept. 2013 |
ISSN | 2166-9570 |
Abstract | The direct-conversion architecture used for Orthogonal Frequency Division Multiplexing (OFDM) systems suffers from intercarrier interference (ICI) between image subcarriers in each OFDM symbol due to I/Q imbalance between the inphase (I) and quadrature (Q) branches at the transmit and receive sides. One of the widely-used metrics to evaluate the performance degradation due to I/Q imbalance is the signal to interference plus noise ratio (SINR). The instantaneous subcarrier SINR can be represented as a ratio conditioned on a particular channel realization and the exact SINR is evaluated by averaging over the channel realizations. In the literature, it is common to approximate the SINR by taking the average of the numerator and denominator separately although the two are not independent. In this paper, we calculate the exact SINR under the assumption that each pair of interfering subcarriers experiences uncorrelated channel realizations. We show that the SINR grows as the logarithm of the input SNR when the receiver has I/Q imbalance. On the other hand, under transmit-only I/Q imbalance, there is an SINR ceiling for large input SNR. Therefore, transmitter side I/Q imbalance is more harmful, in terms of average SINR, than receiver-only I/Q imbalance. We also show that, the approximate SINR expression, commonly used in the literature, is not accurate for large input SNR values, except for the case of transmit-only I/Q imbalance. |
Sponsor | This work is supported by Qatar National Research Fund (QNRF), Grant NPRP 09–062-2–035. |
Language | en |
Publisher | IEEE |
Subject | OFDM modulation Asymptotic SINR wireless channels |
Type | Conference |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Electrical Engineering [2811 items ]