• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Atmospheric Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Atmospheric Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solar driven photocatalytic degradation potential of novel graphitic carbon nitride based nano zero-valent iron doped bismuth ferrite ternary composite

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Solar driven photocatalytic degradation potential of novel graphitic carbon nitride based nano zero-valent iron doped bismuth ferrite ternary composite.pdf (7.577Mb)
    Date
    2021-10-31
    Author
    Munib Ur, Rahman
    Qazi, Umair Yaqub
    Hussain, Tajamal
    Nadeem, Nimra
    Zahid, Muhammad
    Bhatti, Haq Nawaz
    Shahid, Imran
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The synthetic industry has destroyed the life span of human beings due to environmental pollution. The discharged organic pollutants can be degraded by many physicochemical techniques, among them the heterogeneous photocatalysis is distinctive. Nano zero-valent iron (NZVI) doped bismuth ferrite (BiFeO3) nanoparticles were composited with g-C3N4 to fabricate ternary NZVI@BiFeO3/g-C3N4 semiconductor photocatalyst. The facile fabrication was achieved through the hydrothermal approach. The characterization techniques such as X-ray diffraction, Fourier transform infrared and Scanning electron microscopy equipped with energy dispersive X-ray was used. The analysis confirmed the successful fabrication of the photocatalysts. The energy bandgaps of the prepared photocatalysts were measured by the Tauc plot method using a UV–visible spectrophotometer. The energy bandgap values suggest that the insertion of g-C3N4 improves the optical response of catalysts under visible light. The NZVI@BiFeO3/g-C3N4 was employed against Rhodamine B dye for photocatalytic oxidative degradation under sunlight radiations. The influencing parameters like pH, NZVI@BiFeO3/g-C3N4 concentration, oxidant dose, reaction time were optimized to obtain the best-suited conditions. Under optimized conditions (i.e. pH = 9, NZVI@BiFeO3/g-C3N4 = 10 mg/100 mL, oxidant = 18 mM, Time = 120 min) the g-C3N4 based composite photocatalyst showed ~97% oxidative degradation of Rhodamine B. Response surface methodology was used as a statistical tool to check the combinational effect of influencing parameters.
    URI
    https://www.sciencedirect.com/science/article/pii/S0925346721006091
    DOI/handle
    http://dx.doi.org/10.1016/j.optmat.2021.111408
    http://hdl.handle.net/10576/33731
    Collections
    • Atmospheric Science Cluster [‎38‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video