• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Atmospheric Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Atmospheric Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Understanding the role of atmospheric circulations and dispersion of air pollution associated with extreme smog events over South Asian megacity

    View/Open
    Understanding-the-role-of-atmospheric-circulations-and-dispersion-of-air-pollution-associated-with-extreme-smog-events-over-South-Asian-megacityEnvironmental-Monitoring-and-Assessment.pdf (12.33Mb)
    Date
    2022-02-01
    Author
    Bilal, Muhammad
    Hassan, Mujtaba
    Tahir, Danyal Bin Taufiq
    Iqbal, Muhammad Shahid
    Shahid, Imran
    Metadata
    Show full item record
    Abstract
    The winter fog/haze events in northeastern Pakistan and surrounding regions of India are often mixed with pollutants to form smog, and consequently damage human health and hampers daily life in the form of fatalities through road accidents, road blockages, and flight delays. The persistent anti-cyclonic conditions can further trigger the temperature inversion and prolong the smog event from days to weeks. The present study provides characteristics and lasting mechanisms of two persistent winter fog events (2016–2017) in Lahore, Pakistan, by using the fifth generation of European Center for Medium-Range Weather Forecast (ECMWF) ERA5 reanalysis data and National Oceanic and Atmospheric Administration (NOAA) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model simulated with Global Data Assimilation System (GDAS) meteorological data. The results showed the presence of strong low-level anti-cyclonic circulations with wind speed less than 1.5 m/s from November to January over Eastern Punjab for two foggy winter seasons. The deep inversion during the fog events was observed that prevented the natural ventilation of air in the upper atmosphere and ultimately the smoke and heavy pollutant accumulated in the lower atmosphere. Furthermore, high relative humidity greater than 83% near the ground indicates a high condensation rate for water vapors to form fog near the ground. The analysis of the NOAA HYSPLIT trajectory model at different vertical heights revealed that smoke from stubble crop burning in the first week of November 2017 in Punjab and Haryana mixed with fog under favorable stable conditions that lead to intense smog over Lahore. This study will help to understand and to develop a forecasting mechanism of fog events by characterizing the meteorological conditions of the study area and to minimize the adverse impacts of smog on public health.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85122486816&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s10661-021-09674-y
    http://hdl.handle.net/10576/33749
    Collections
    • Atmospheric Science Cluster [‎38‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video