• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Immunoinformatics prediction of potential immunodominant epitopes from human coronaviruses and association with autoimmunity

    Thumbnail
    View/Open
    Immunoinformatics prediction of potential immunodominant epitopes from human coronaviruses and association with autoimmunity.pdf (1.719Mb)
    Date
    2022-04-01
    Author
    Mathew, S.
    Mathew, Shilu
    Fakhroo, Aisha D.
    Smatti, Maria
    Al Thani, Asmaa A.
    Yassine, Hadi M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Cross-reactivity between different human coronaviruses (HCoVs) might contribute to COVID-19 outcomes. Here, we aimed to predict conserved peptides among different HCoVs that could elicit cross-reacting B cell and T cell responses. Three hundred fifty-one full-genome sequences of HCoVs, including SARS-CoV-2 (51), SARS-CoV-1 (50), MERS-CoV (50), and common cold species OC43 (50), NL63 (50), 229E (50), and HKU1 (50) were downloaded aligned using Geneious Prime 20.20. Identification of epitopes in the conserved regions of HCoVs was carried out using the Immune Epitope Database (IEDB) to predict B- and T-cell epitopes. Further, we identified sequences that bind multiple common MHC and modeled the three-dimensional structures of the protein regions. The search yielded 73 linear and 35 discontinuous epitopes. A total of 16 B-cell and 19 T-cell epitopes were predicted through a comprehensive bioinformatic screening of conserved regions derived from HCoVs. The 16 potentially cross-reactive B-cell epitopes included 12 human proteins and four viral proteins among the linear epitopes. Likewise, we identified 19 potentially cross-reactive T-cell epitopes covering viral proteins. Interestingly, two conserved regions: LSFVSLAICFVIEQF (NSP2) and VVHSVNSLVSSMEVQSL (spike), contained several matches that were described epitopes for SARS-CoV. Most of the predicted B cells were buried within the SARS-CoV-2 protein regions’ functional domains, whereas T-cell stretched close to the functional domains. Additionally, most SARS-CoV-2 predicted peptides (80%) bound to different HLA types associated with autoimmune diseases. We identified a set of potential B cell and T cell epitopes derived from the HCoVs that could contribute to different diseases manifestation, including autoimmune disorders.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85122920081&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s00251-021-01250-5
    http://hdl.handle.net/10576/33923
    Collections
    • Biomedical Sciences [‎819‎ items ]
    • COVID-19 Research [‎849‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video