• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Biomedical Research Center
  • Biomedical Research Center Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Microbiome engineering to combat antimicrobial resistance and upsurge productivity of food animals: a systematic review

    Thumbnail
    View/Open
    Micobiome to combat AMR.pdf (1.203Mb)
    Date
    2022-09-12
    Author
    Johar, Al-Reem A.
    Abu-Rub, Lubna I.
    Al Mana, Hassan
    Yassine, Hadi M.
    Eltai, Nahla O.
    Metadata
    Show full item record
    Abstract
    Extensive antimicrobial usage in animal farming plays a prominent role in the antimicrobial resistance (AMR) crisis and is repeatedly highlighted as an area needing development under the ‘One Health’ approach. Alternative therapies such as microbiome products can be used as prophylaxis to help avoid infectious disease. However, a limited number of studies have focused on AMR-targeted microbiome products. We conducted this systematic review by using PRISMA guidelines to screen for literature that have evaluated food animals’ health when administrated with microbiome products targeting antimicrobial resistance (AMR) or antibiotic-resistant genes (ARGs). We searched and examined studies from SCOPUS, Web of Science, Embase, and Science direct databases for studies published up to November 2021, restricted to the English language. The findings of this review showed that microbiome products have a promising capability to tackle specific AMR/ARGs coupled with animal’s health and productivity improvement. Furthermore, our study showed that probiotics were the most favorable tested microbiome products, with the most targeted resistance being to tetracycline, macrolides, and beta-lactams. While microbiome products are promising alternatives to antibiotic prophylactics, there is a dearth of studies investigating their efficacy in targeting AMR. Thus, it is highly recommended to further investigate, develop, and improve the microbiome, to better understand its utility and circumvent its limitations.
    DOI/handle
    http://dx.doi.org/10.1071/AN22233
    http://hdl.handle.net/10576/34433
    Collections
    • Biomedical Research Center Research [‎794‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video