• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Personalized Content Sharing via Mobile Crowdsensing

    Thumbnail
    التاريخ
    2022-06-01
    المؤلف
    Zhao, Lindong
    Wei, Xin
    Chen, Jianxin
    Zhou, Liang
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Personalized content sharing will inevitably become one of the core applications of mobile Internet of Things. However, the existing strategies for content sharing are far from effective content personalization, since they either fail to protect the diversity of shared content or harm the enthusiasm of users to participate in cooperation. How to optimize the tradeoff between content personalization and sharing efficiency thus becomes an extremely challenging problem. To circumvent this dilemma, we propose a social-aware personalized content-sharing strategy based on mobile crowdsensing (MCS), which specially introduces positive network externalities derived from MCS and the social network. Specifically, we design a two-stage pricing-participation game to model the interactions between mobile users and a profit-making service provider. By solving the subgame-perfect Nash equilibrium (NE) of the proposed game, an efficient participation mechanism and an optimal-pricing strategy are developed. First, users' decision selection of whether to join MCS is modeled as a social-aware MCS participation game (SA-MPG), and two algorithms for solving the Pareto-optimal NE of SA-MPG are designed. Subsequently, the pricing issue for network operators is investigated by exploiting the supermodularity of SA-MPG. Stochastic network model and real-world data set-based simulations corroborate the significant gain of our proposed strategy.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85115669458&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2021.3113869
    http://hdl.handle.net/10576/34909
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video