• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Traffic Safety
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Transportation and Traffic Safety Center
  • Traffic Safety
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Driving behavior classification at signalized intersections using vehicle kinematics: Application of unsupervised machine learning

    Thumbnail
    Date
    2022-07
    Author
    Khanfar, Nour O.
    Elhenawy, Mohammed
    Ashqar, Huthaifa I.
    Hussain, Qinaat
    Alhajyaseen, Wael K.M.
    Metadata
    Show full item record
    Abstract
    Driving behavior is considered as a unique driving habit of each driver and has a significant impact on road safety. This study proposed a novel data-driven Machine Learning framework that can classify driving behavior at signalized intersections considering two different signal conditions. To the best of our knowledge, this is the first study that investigates driving behavior at signalized intersections with two different conditions that are mostly used in practice, i.e., the control setting with the signal order of green-yellow-red and a flashing green setting with the signal order of green-flashing green-yellow-red. A driving simulator dataset collected from participants at Qatar University’s Qatar Transportation and Traffic Safety Center, driving through multiple signalized intersections, was used. The proposed framework extracts volatility measures from vehicle kinematic parameters including longitudinal speed and acceleration. K-means clustering algorithm with elbow method was used as an unsupervised machine learning to cluster driving behavior into three classes (i.e., conservative, normal, and aggressive) and investigate the impact of signal conditions. The framework confirmed that in general driving behavior at a signalized intersection reflects drivers’ habits and personality rather than the signal condition, still, it manifests the intersection nature that usually requires drivers to be more vigilant and cautious. Nonetheless, the results suggested that flashing green condition could make drivers more conservative, which could be due to the limited capabilities of human to estimate the remaining distance and the prolonged duration of the additional flashing green interval. The proposed framework and findings of the study were promising that can be used for clustering drivers into different styles for different conditions and might be beneficial for policymakers, researchers, and engineers.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85134675918&origin=inward
    DOI/handle
    http://dx.doi.org/10.1080/17457300.2022.2103573
    http://hdl.handle.net/10576/35195
    Collections
    • Traffic Safety [‎163‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video