• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Demand-Driven Incremental Deployment Strategy for Edge Computing in IoT Network

    Thumbnail
    التاريخ
    2022-01-01
    المؤلف
    Ren, Wei
    Sun, Yan
    Luo, Hong
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Edge Computing brings great opportunities to enable the Internet of Things (IoT) vision. But the physical edge server deployment problem still poses a major challenge, which dramatically affects the service ability and service cost of edge computing. Previous work mostly assume that the edge servers are installed at one time. However, due to ever-increasing services, limited budget and evolving techniques, it is more reasonable to deploy edge servers in a gradual fashion. In this paper, we propose a demand-driven incremental deployment strategy (DDID) to resolve this problem. First, a novel demand model is designed to quantify the rigid and non-rigid demand of IoT services for edge computing. Then, we formulate the edge server multi-period deployment problem as a bi-level integer linear program model. The lower-level placement is to minimize the overall deployment cost throughout a planning horizon. We adopt a subgradient optimization with Lagrangian dual to solve this subproblem. In the upper-level allocation, due to the capacity limitation, we adopt a best-effort tuning scheme to prioritize the high demand services with multiple objectives. This subproblem is addressed by an improved MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition). Finally, we evaluate the DDID in synthetic topologies. Experimental results show that, compared to the one-time deployment method, it reduces the deployment cost by 18% on average with acceptable service ability loss for edge computing.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85117773046&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TNSE.2021.3120270
    http://hdl.handle.net/10576/35248
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video