• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On Designing Smart Agents for Service Provisioning in Blockchain-Powered Systems

    Thumbnail
    التاريخ
    2022-01-01
    المؤلف
    Mhaisen, Naram
    Allahham, Mhd Saria
    Mohamed, Amr
    Erbad, Aiman
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Service provisioning systems assign users to service providers according to allocation criteria that strike an optimal trade-off between users' Quality of Experience (QoE) and the operation cost endured by providers. These systems have been leveraging Smart Contracts (SCs) to add trust and transparency to their criteria. However, deploying fixed allocation criteria in SCs does not necessarily lead to the best performance over time since the blockchain participants join and leave flexibly, and their load varies with time, making the original allocation sub-optimal. Furthermore, updating the criteria manually at every variation in the blockchain jeopardizes the autonomous and independent execution promised by SCs. Thus, we propose a set of light-weight agents for SCs that are capable of optimizing the performance. We also propose using online learning SCs, empowered by Deep Reinforcement Learning (DRL) agent, that leverage the chained data to continuously self-tune its allocation criteria. We show that the proposed learning-assisted method achieves superior performance on the combinatorial multi-stage allocation problem while still being executable in real-time. We also compare the proposed approach with standard heuristics as well as planning methods. Results show a significant performance advantage over heuristics and better adaptability to the dynamic nature of blockchain networks.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85117747859&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TNSE.2021.3118970
    http://hdl.handle.net/10576/35268
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video