• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DeepAutoD: Research on Distributed Machine Learning Oriented Scalable Mobile Communication Security Unpacking System

    Thumbnail
    التاريخ
    2022-01-01
    المؤلف
    Lu, Hui
    Jin, Chengjie
    Helu, Xiaohan
    Du, Xiaojiang
    Guizani, Mohsen
    Tian, Zhihong
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The rapid growth of Android smart phones and abundant applications (Apps), a new security solution for distributed computing and mobile communications, has prompted many enhanced vendors to use different methods to effectively protect important Android files on distributed systems / servers. However, it also brings some serious distributed security problems: for example, malicious applications use reinforcement methods to hide their high-risk code, and even hide in normal applications to avoid being detected by anti-virus engines. This makes it more difficult to filter or detect malware applications. In serious cases, it will greatly affect the efficiency of mobile communication and threaten the security of distributed computers. In this paper, we propose a generic and easy to deploy and extend unpacking framework called DeepAutoD (hereinafter referred to as d-ad). By eliminating the influence of reinforcement, the framework outputs the original DEX files containing malicious features, which can provide complete feature information input for distributed machine learning based on malicious code detection. The unpacking technology solution we use integrates the deep deception call chain, which can detect the mainstream applications in the application market in a short time (a large number of malicious code will be hidden in the conventional applications), and the algorithm can adapt to any high version of Android system. Data analysis and experimental results show that the program is superior to the existing main programs in terms of safety and effectiveness.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85112602399&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TNSE.2021.3100750
    http://hdl.handle.net/10576/35270
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video