• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Digital Twin for Intelligent Context-Aware IoT Healthcare Systems

    Thumbnail
    التاريخ
    2021-12-01
    المؤلف
    Elayan, Haya
    Aloqaily, Moayad
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Since the emergence of digital and smart healthcare, the world has hastened to apply various technologies in this field to promote better health operation and patients' well being, increase life expectancy, and reduce healthcare costs. One promising technology and game changer in this domain is digital twin (DT). DT is expected to change the concept of digital healthcare and take this field to another level that has never been seen before. DT is a virtual replica of a physical asset that reflects the current status through real-time transformed data. This article proposes and implements an intelligent context-aware healthcare system using the DT framework. This framework is a beneficial contribution to digital healthcare and to improve healthcare operations. Accordingly, an electrocardiogram (ECG) heart rhythms classifier model was built using machine learning to diagnose heart disease and detect heart problems. The implemented models successfully predicted a particular heart condition with high accuracy in different algorithms. The collected results have shown that integrating DT with the healthcare field would improve healthcare processes by bringing patients and healthcare professionals together in an intelligent, comprehensive, and scalable health ecosystem. Also, implementing an ECG classifier that detects heart conditions gives the inspiration for applying ML and artificial intelligence with different human body metrics for continuous monitoring and abnormalities detection. Finally, neural-network-based algorithms deal better with ECG data than traditional ML algorithms.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85099592329&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2021.3051158
    http://hdl.handle.net/10576/35509
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video