• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    NeuroTrust - Artificial-Neural-Network-Based Intelligent Trust Management Mechanism for Large-Scale Internet of Medical Things

    Thumbnail
    التاريخ
    2021-11-01
    المؤلف
    Awan, Kamran Ahmad
    Din, Ikram Ud
    Almogren, Ahmad
    Almajed, Hisham
    Mohiuddin, Irfan
    Guizani, Mohsen
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Internet of Medical Things (IoMT) provides a diverse platform for healthcare to enhance the accuracy, reliability, and efficiency. In addition, it utilizes the productivity of available equipment to improve patients' health. IoMT also provides distinct ways by which healthcare will be revolutionized as it provides numerous opportunities to handle operations with precision. However, numerous advantages have raised several security challenges, such as trust, data integrity, network constraints, and real-time processing among others. There is a requirement for a robust approach to maintain data integrity along with the behavior detection of nodes to completely maintain a secure environment. In the proposed approach, the mechanism is capable of maintaining a robust network by predicting and eliminating malicious nodes. The proposed NeuroTrust approach utilizes the trust parameters to evaluate the degree of trust that include reliability, compatibility, and packet delivery. This approach also lightens the two-way computation burden and uses a lightweight encryption mechanism to further enhance the security and integrity during data dissemination, which is required for the digital revolution in delivering efficient high quality healthcare. The performance of the proposed approach has been extensively evaluated against the absolute trust formulation, accuracy of trust computation, energy consumption, and several potential attacks. The simulation results show the effective performance to identify malicious and compromised nodes, and maintain resilience against various attacks.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85118380937&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2020.3029221
    http://hdl.handle.net/10576/35527
    المجموعات
    • علوم وهندسة الحاسب [‎2429‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video