• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Machine-Learning-Aided Optical Fiber Communication System

    Thumbnail
    التاريخ
    2021-07-01
    المؤلف
    Pan, X.
    Wang, Xishuo
    Tian, Bo
    Wang, Chuxuan
    Zhang, Hongxin
    Guizani, Mohsen
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The fiber optical network offers high speed, large bandwidth, and a high degree of reliability. However, the development of optical communication technology has hit a bottleneck due to several challenges such as energy loss, cost, and system capacity approaching the Shannon limit. As a powerful tool, machine learning technology provides a strong driving force for the development of various industries and greatly promotes the development of society. Machine learning also provides a new possible solution to achieve greater transmission capacities and longer transmission distances in optical communications. In this article, we introduce the application of machine learning in optical communication network systems. Three use cases are presented to evaluate the feasibility of our proposed architecture. In the transmission layer, the principal-component-based phase estimation algorithm is used for phase noise recovery in coherent optical systems, and the K-means algorithm is adopted to reduce the influence of nonlinear noise in probabilistic shaping systems. As for the network layer, the long short-term memory algorithm and the genetic algorithm are suitable for making traffic predictions and determining reasonable placement locations of remote radio heads in centralized radio access networks. Extensive simulations and experiments are conducted to evaluate the proposed algorithm in comparison to the state-of-the-art schemes. The results show the performance of three use cases. Machine learning algorithms applied to the transmission layer can greatly promote the performance of digital signal processing without increasing the complexity. Machine learning algorithms applied to the network layer can provide a more appropriate channel allocation plan in the era of high-speed communication. Ultimately, the intent of this article is to serve as a basis for stimulating more research in machine learning in optical communications.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85113408814&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/MNET.011.2000676
    http://hdl.handle.net/10576/35615
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video