• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Distributed spectrum sensing of correlated observations in cognitive radio networks

    Thumbnail
    Date
    2013
    Author
    Sedighi, Saeid
    Pourgharehkhan, Zahra
    Taherpour, Abbas
    Khattab, Tamer
    Metadata
    Show full item record
    Abstract
    In this paper, Collaborative Spectrum Sensing (CSS) as one of the most efficient sensing approaches in Cognitive Radio Networks (CRNs) is investigated when the Secondary Users (SUs) observations are assumed to be correlated. A novel soft decision rule based on the covariance matrix of the SUs observations is proposed. By using the proposed scheme, we derive two Generalized Likelihood Ratio (GLR) detectors and then, we obtain the closed-form expressions for the detection and false-alarm probabilities. The proposed collaborative sensing method can control the available trade-off between efficient spectrum usage and more accurate spectrum sensing, which is not possible in the other counterpart collaborative sensing methods based on the soft decision rule. In order to have the best performance in the terms of spectral efficiency, power efficiency and spectrum sensing, we study the problem of designing the fusion parameter, the decision threshold and the number of SUs to maximize power efficiency and spectrum usage efficiency under the constraint that the Primary User (PU) is sufficiently protected. Finally, we provide the computer simulations to verify the validity of the obtained results. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/IEEEGCC.2013.6705827
    http://hdl.handle.net/10576/35652
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video