• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy-efficient cooperative relaying protocol for full-duplex cognitive radio users and delay-aware primary users

    Thumbnail
    Date
    2015
    Author
    El Shafie, Ahmed
    Khattab, Tamer
    Metadata
    Show full item record
    Abstract
    This paper considers a network in which a primary user (PU) may cooperate with a cognitive radio (CR) user for transmission of its data packets. The PU is assumed to be a buffered terminal operating in a time-slotted fashion. We develop an energy-efficient protocol that involves cooperation and coordination between primary and secondary users. To satisfy certain quality-of-service requirements, users share time slot duration and frequency bandwidth. Moreover, the secondary user (SU) may leverage the primary feedback channel. The proposed protocol is designed such that the secondary rate is maximized and the primary queueing delay is maintained less than the queueing delay in case of non-cooperative PU. In addition, the proposed protocol guarantees the stability of the primary queue and maintains the average energy emitted by the CR user below a certain predefined value that depends on the application. The proposed protocol provides more robust and potentially continuous service for SUs compared to the conventional practice in cognitive networks where SUs transmit in the spectrum holes and silence sessions of the PUs. We include primary source burstiness and sensing errors to the analysis of the proposed cooperative cognitive protocol. Numerical results show the beneficial gains of the cooperative protocol in terms of SU rate and PU throughput, PU queueing delay, and PU average energy savings. 2015 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICCNC.2015.7069342
    http://hdl.handle.net/10576/35657
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video