• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Joint Flight Cruise Control and Data Collection in UAV-Aided Internet of Things: An Onboard Deep Reinforcement Learning Approach

    Thumbnail
    التاريخ
    2021-06-15
    المؤلف
    Li, Kai
    Ni, Wei
    Tovar, Eduardo
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Employing unmanned aerial vehicles (UAVs) as aerial data collectors in Internet-of-Things (IoT) networks is a promising technology for large-scale environment sensing. A key challenge in UAV-aided data collection is that UAV maneuvering gives rise to buffer overflow at the IoT node and unsuccessful transmission due to lossy airborne channels. This article formulates a joint optimization of flight cruise control and data collection schedule to minimize network data loss as a partially observable Markov decision process (POMDP), where the states of individual IoT nodes can be obscure to the UAV. The problem can be optimally solvable by reinforcement learning, but suffers from the curse of dimensionality and becomes rapidly intractable with the growth in the number of IoT nodes. In practice, a UAV-aided IoT network contains a large number of network states and actions in POMDP while the up-to-date knowledge is not available at the UAV. We propose an onboard deep Q -network-based flight resource allocation scheme (DQN-FRAS) to optimize the online flight cruise control of the UAV and data scheduling given outdated knowledge on the network states. Numerical results demonstrate that DQN-FRAS reduces the packet loss by over 51%, as compared to existing nonlearning heuristics.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104378672&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2020.3019186
    http://hdl.handle.net/10576/35665
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video