• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A survey on federated learning: The journey from centralized to distributed on-site learning and beyond

    عرض / فتح
    A_Survey_on_Federated_Learning_The_Journey_From_Centralized_to_Distributed_On-Site_Learning_and_Beyond.pdf (2.297Mb)
    التاريخ
    2021-04-01
    المؤلف
    Abdulrahman, Sawsan
    Tout, Hanine
    Ould-Slimane, Hakima
    Mourad, Azzam
    Talhi, Chamseddine
    Guizani, Mohsen
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Driven by privacy concerns and the visions of deep learning, the last four years have witnessed a paradigm shift in the applicability mechanism of machine learning (ML). An emerging model, called federated learning (FL), is rising above both centralized systems and on-site analysis, to be a new fashioned design for ML implementation. It is a privacy-preserving decentralized approach, which keeps raw data on devices and involves local ML training while eliminating data communication overhead. A federation of the learned and shared models is then performed on a central server to aggregate and share the built knowledge among participants. This article starts by examining and comparing different ML-based deployment architectures, followed by in-depth and in-breadth investigation on FL. Compared to the existing reviews in the field, we provide in this survey a new classification of FL topics and research fields based on thorough analysis of the main technical challenges and current related work. In this context, we elaborate comprehensive taxonomies covering various challenging aspects, contributions, and trends in the literature, including core system models and designs, application areas, privacy and security, and resource management. Furthermore, we discuss important challenges and open research directions toward more robust FL systems.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103307200&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/JIOT.2020.3030072
    http://hdl.handle.net/10576/35858
    المجموعات
    • علوم وهندسة الحاسب [‎2485‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • Thumbnail

      Machine Learning for Healthcare Wearable Devices: The Big Picture 

      Sabry, Farida; Eltaras, Tamer; Labda, Wadha; Alzoubi, Khawla; Malluhi, Qutaibah ( John Wiley and Sons Inc , 2022 , Article Review)
      Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and ...
    • Deep Reinforcement Learning for Autonomous Navigation on Duckietown Platform: Evaluation of Adversarial Robustness 

      Hosseini, Abdullah; Houti, Saeid; Qadir, Junaid ( IEEE , 2023 , Conference)
      Self-driving cars have gained widespread attention in recent years due to their potential to revolutionize the transportation industry. However, their success critically depends on the ability of reinforcement learning ...
    • Thumbnail

      A cooperative Q-learning approach for distributed resource allocation in multi-user femtocell networks 

      Saad H.; Mohamed A.; El Batt T. ( Institute of Electrical and Electronics Engineers Inc. , 2016 , Conference)
      This paper studies distributed interference management for femtocells that share the same frequency band with macrocells. We propose a multi-agent learning technique based on distributed Q-learning, called subcarrier-based ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video