• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Joint resource allocation and power control for D2D communication with deep reinforcement learning in MCC

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    Joint resource allocation and power control for D2D communication with deep reinforcement learning in MCC.pdf (1.816Mb)
    التاريخ
    2021-04-01
    المؤلف
    Wang, Dan
    Qin, Hao
    Song, Bin
    Xu, Ke
    Du, Xiaojiang
    Guizani, Mohsen
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Mission-critical communication (MCC) is one of the main goals in 5G, which can leverage multiple device-to-device (D2D) connections to enhance reliability for mission-critical communication. In MCC, D2D users can reuses the non-orthogonal wireless resources of cellular users without a base station (BS). Meanwhile, the D2D users will generate co-channel interference to cellular users and hence affect their quality-of-service (QoS). To comprehensively improve the user experience, we proposed a novel approach, which embraces resource allocation and power control along with Deep Reinforcement Learning (DRL). In this paper, multiple procedures are carefully designed to assist in developing our proposal. As a starter, a scenario with multiple D2D pairs and cellular users in a cell will be modeled; followed by the analysis of issues pertaining to resource allocation and power control as well as the formulation of our optimization goal; and finally, a DRL method based on spectrum allocation strategy will be created, which can ensure D2D users to obtain the sufficient resource for their QoS improvement. With the resource data provided, which D2D users capture by interacting with surroundings, the DRL method can help the D2D users autonomously selecting an available channel and power to maximize system capacity and spectrum efficiency while minimizing interference to cellular users. Experimental results show that our learning method performs well to improve resource allocation and power control significantly.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85098740731&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.phycom.2020.101262
    http://hdl.handle.net/10576/35868
    المجموعات
    • علوم وهندسة الحاسب [‎2483‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video