• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Novel Class Noise Detection Method for High-Dimensional Data in Industrial Informatics

    Thumbnail
    التاريخ
    2021-03-01
    المؤلف
    Guan, Donghai
    Chen, Kai
    Han, Guangjie
    Huang, Shuqiang
    Yuan, Weiwei
    Guizani, Mohsen
    Shu, Lei
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The data in industrial informatics may be high-dimensional and mislabeled. Irrelevant or noisy features pose a significant challenge to the detection of high-dimensional mislabeling. The traditional method usually adopts a two-step solution, first finding the relevant subspace and then using it for mislabeling detection. This two-step method struggles to provide the optimal mislabeling detection performance, since it separates the procedures of feature selection and label error detection. To solve this problem, in this article, we integrate the two steps and propose a sequential ensemble noise filter (SENF). In the SENF, relevant features are selected and used to generate a noise score for each instance. Continuously, these noise scores guide feature selection in the regression learning. Thus, the SENF falls in the scope of sequential ensemble learning. We evaluate our approach on several benchmark datasets with high dimensionality and much label noise. It is shown that the SENF is significantly better than other existing label noise detection methods.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85097895749&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TII.2020.3012658
    http://hdl.handle.net/10576/35926
    المجموعات
    • علوم وهندسة الحاسب [‎2483‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video