• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Resource allocation in information-centric wireless networking with D2D-enabled MEC: A deep reinforcement learning approach

    Thumbnail
    عرض / فتح
    Resource_Allocation_in_Information-Centric_Wireless_Networking_With_D2D-Enabled_MEC_A_Deep_Reinforcement_Learning_Approach.pdf (6.768Mb)
    التاريخ
    2019
    المؤلف
    Wang, Dan
    Qin, Hao
    Song, Bin
    Du, Xiaojiang
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Recently, information-centric wireless networks (ICWNs) have become a promising Internet architecture of the next generation, which allows network nodes to have computing and caching capabilities and adapt to the growing mobile data traffic in 5G high-speed communication networks. However, the design of ICWN is still faced with various challenges with respect to capacity and traffic. Therefore, mobile edge computing (MEC) and device-to-device (D2D) communications can be employed to aid offloading the core networks. This paper investigates the optimal policy for resource allocation in ICWNs by maximizing the spectrum efficiency and system capacity of the overall network. Due to unknown and stochastic properties of the wireless channel environment, this problem was modeled as a Markov decision process. In continuousvalued state and action variables, the policy gradient approach was employed to learn the optimal policy through interactions with the environment. We first recognized the communication mode according to the location of the cached content, considering whether it is D2D mode or cellular mode. Then, we adopt the Gaussian distribution as the parameterization strategy to generate continuous stochastic actions to select power. In addition, we use softmax to output channel selection to maximize system capacity and spectrum efficiency while avoiding interference to cellular users. The numerical experiments show that our learning method performs well in a D2D-enabled MEC system. 2020 Association for Computing Machinery. All rights reserved.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2019.2935545
    http://hdl.handle.net/10576/36114
    المجموعات
    • علوم وهندسة الحاسب [‎2483‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video