• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep Federated Learning for IoT-based Decentralized Healthcare Systems

    Thumbnail
    التاريخ
    2021-01-01
    المؤلف
    Elayan, Haya
    Aloqaily, Moayad
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Recent trends in the healthcare industry, such as the use of wearable IoT for continuous health monitoring, are setting new requirements for healthcare systems that boost data analysis. These systems should support decentralization and maintain the privacy and ownership of users' data due to the sensitivity of healthcare data. Therefore, the use of federated learning techniques is recommended for systems that need such requirements. This paper proposes a Deep Federated Learning framework for decentralized healthcare systems that maintain user privacy in a distributed architecture. It also proposes an algorithm for an automated training data acquiring process. Furthermore, it presents an experiment for using deep federated learning in detecting skin diseases and using Transfer Learning to address the problem of limited availability of healthcare data in building deep learning models. The evaluated results show how the federated learning increased the Area Under the Curve of the centralized learning model up to 0.97, as it also shows good model performance during federated rounds in terms of accuracy, precision, recall, and F1-score. Moreover, although the FL system has affected the quality of service to the user in terms of model conversion time, the Federated Learning system meets the requirements of building models in a decentralized manner with no sharing of users' private data.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124783317&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/IWCMC51323.2021.9498820
    http://hdl.handle.net/10576/36235
    المجموعات
    • علوم وهندسة الحاسب [‎2485‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video