• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Toward Safer Vehicular Transit: Implementing Deep Learning on Single Channel EEG Systems for Microsleep Detection

    Thumbnail
    التاريخ
    2021-01-01
    المؤلف
    Balaji, Aswin
    Tripathi, Utkarsh
    Chamola, Vinay
    Benslimane, Abderrahim
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Technological interventions are becoming commonplace in everyday vehicles. But utilization of biosignals that can enhance the overall driving experience is still limited. Microsleep is one such issue that needs intervention, owing to the difficulty in its detection and social acceptance of using wearable BCI devices during transit. Microsleep is a short duration of sleep that lasts from few to several seconds. It could occur unconsciously without the person in context realizing it. This, therefore, happens before the deep sleep and could also occur when performing critical tasks such as driving on a highway. By using modern-day advancements in Internet of Things (IoT) and Machine Learning, we can provide efficient solutions to prevent accidents due to microsleep during vehicular transit. However, it is noteworthy that distinguishing microsleep using a single channel system is a challenge. We have explored this using datasets provided by International BCI Competition Committee. Given the fact that the participants' values might not match the exact scenario, approaches for exploiting transitory phases using ANN/CNN have been developed and discussed in this paper. Transitory phases could include Wakefulness ↔ Non-Rapid Eye Movement-1 phase (NREM-1). Results show ≈95% increase in mean statistical agreements, which are represented by kappa values (CNN NREM1 → CNN Transition) and ≈77% increase in mean kappa (ANN NREM1 → ANN Transition). Hence, this work gives an initial indication whether classifiers trained on night sleep data can be used for microsleep detection in more real-world scenarios.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119427236&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TITS.2021.3125126
    http://hdl.handle.net/10576/36244
    المجموعات
    • علوم وهندسة الحاسب [‎2482‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video