عرض بسيط للتسجيلة

المؤلفBalaji, Aswin
المؤلفTripathi, Utkarsh
المؤلفChamola, Vinay
المؤلفBenslimane, Abderrahim
المؤلفGuizani, Mohsen
تاريخ الإتاحة2022-11-13T07:01:56Z
تاريخ النشر2021-01-01
اسم المنشورIEEE Transactions on Intelligent Transportation Systems
المعرّفhttp://dx.doi.org/10.1109/TITS.2021.3125126
الاقتباسBalaji, A., Tripathi, U., Chamola, V., Benslimane, A., & Guizani, M. (2021). Toward Safer Vehicular Transit: Implementing Deep Learning on Single Channel EEG Systems for Microsleep Detection. IEEE Transactions on Intelligent Transportation Systems.‏
الرقم المعياري الدولي للكتاب15249050
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119427236&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/36244
الملخصTechnological interventions are becoming commonplace in everyday vehicles. But utilization of biosignals that can enhance the overall driving experience is still limited. Microsleep is one such issue that needs intervention, owing to the difficulty in its detection and social acceptance of using wearable BCI devices during transit. Microsleep is a short duration of sleep that lasts from few to several seconds. It could occur unconsciously without the person in context realizing it. This, therefore, happens before the deep sleep and could also occur when performing critical tasks such as driving on a highway. By using modern-day advancements in Internet of Things (IoT) and Machine Learning, we can provide efficient solutions to prevent accidents due to microsleep during vehicular transit. However, it is noteworthy that distinguishing microsleep using a single channel system is a challenge. We have explored this using datasets provided by International BCI Competition Committee. Given the fact that the participants' values might not match the exact scenario, approaches for exploiting transitory phases using ANN/CNN have been developed and discussed in this paper. Transitory phases could include Wakefulness ↔ Non-Rapid Eye Movement-1 phase (NREM-1). Results show ≈95% increase in mean statistical agreements, which are represented by kappa values (CNN NREM1 → CNN Transition) and ≈77% increase in mean kappa (ANN NREM1 → ANN Transition). Hence, this work gives an initial indication whether classifiers trained on night sleep data can be used for microsleep detection in more real-world scenarios.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعaccident avoidance.
Brain-computer interface
cognitive networking
Internet of Things
microsleep detection
العنوانToward Safer Vehicular Transit: Implementing Deep Learning on Single Channel EEG Systems for Microsleep Detection
النوعArticle
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة