• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Programmable Switch Aided Content Popularity Prediction and Caching Strategy

    Thumbnail
    التاريخ
    2020-12-12
    المؤلف
    He, Wenji
    Yao, Haipeng
    Mai, Tianle
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Content distribution is the most critical task for the current Internet, (e.g., the estimated video traffic will reach 82 percent of the Internet traffic by 2022). With the fast increase of load of the network, traditional host-centric based network paradigm (i.e., TCP/IP) faces great challenges in terms of efficiency, security, and privacy. To solve the problems confronting the current Internet, the Information-Centric Network (ICN) becomes a promising solution, where the focal point is identified content rather than specific host addresses. This paradigm brings many benefits, e.g., network traffic reduction, low retrieval latency. Besides, benefiting from the advance of programmable network hardware, the operator can reconfigure the network hardware' behavior, thus providing hardware support to describe the ICN instances. However, ICN also poses new challenges to cache management. The cache redundancy and unequal resource allocation will seriously affect the performance of the network. In this paper, we propose a distributed variational Bayes aided content popularity prediction algorithm. The extensive and indepth simulations are performed to evaluate our proposed algorithm in comparison to the other state-of-the-art schemes.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102108929&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/HotICN50779.2020.9350795
    http://hdl.handle.net/10576/36293
    المجموعات
    • علوم وهندسة الحاسب [‎2485‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video