• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing building

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Mehrjerdi, Hasan
    Hemmati, Reza
    Metadata
    Show full item record
    Abstract
    The home energy management is an efficient tool to manage energy in the buildings that organizes different technologies and mathematical techniques to minimize energy cost. Home energy management often utilizes renewable energy resources to supply load demand in the building. Current home energy management systems utilize one or several of the available hardware-software capacity resources to deal with energy consumption in the buildings. However, a comprehensive model including various hardware and software capacity resources may increase the flexibility of the model. In this regard, this paper studies an efficient paradigm for home energy management in the building connected to electric grid. The proposed model forms an energy hub including the hardware resources (i.e., vehicle-to-home, wind turbine, and diesel generator) and software tools (i.e., demand response program). All the capacity resources and grid power are optimally adjusted to minimize the daily operational cost of the building as well as improvement of resiliency and self-healing. Wind energy and load uncertainty are modeled through stochastic programming. The seasonal pattern is considered for loads, prices, and wind energy. Simulation results demonstrate that operating all capacity resources minimizes the daily operational cost. When the wind energy, demand response program, vehicle-to-home, and diesel generator are not utilized, the cost is increased by 900, 230, 84, and 322%, respectively. It is also confirmed that the building not only can operate when one of the components is not connected, but also it is able to supply the demand under off-grid operation. 2019 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.renene.2019.07.004
    http://hdl.handle.net/10576/36321
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video