• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal allocation of power-to-hydrogen units in regional power grids for green hydrogen trading: Opportunities and barriers

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2022
    Author
    Zare Oskouei, Morteza
    Mehrjerdi, Hasan
    Metadata
    Show full item record
    Abstract
    Due to the increasing hydrogen demands, a strong sense of commitment has recently been found to take advantage of the economic opportunities offered by power-to-hydrogen (P2H) units considering the high penetration of renewable energy sources (RESs). Deriving a market participation model for extracting green hydrogen with special attention to the grid code requirements is a fundamental challenge that has not yet been addressed. Motivated by this challenge, this paper presents a stochastic security-constrained optimal power flow (SSC-OPF) model to optimally allocate P2H units in renewable-dominated regional power grids. The main aim of the proposed planning model is to maximize the profit of power grid operators by extracting as much green hydrogen as possible and delivering it to the downstream industries. The presented model covers essential operational constraints, reserve adequacy issues, conservation voltage reduction, and uncertain behavior of demands and RESs to ensure the realistic operation of power grids. Moreover, the net present value of the proposed model is calculated to determine the profitability rate of using P2H units according to business models. The applicability of the proposed model is examined on the extended IEEE 30-bus and IEEE 118-bus test systems. The simulation results show that the use of P2H units in combination with RESs not only makes power grids more profitable but also improves the technical parameters. 2022 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.jclepro.2022.131937
    http://hdl.handle.net/10576/36349
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video