• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Resilience maximization through mobile battery storage and diesel DG in integrated electrical and heating networks

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2021
    Author
    Mehrjerdi, Hasan
    Mahdavi, Sajad
    Hemmati, Reza
    Metadata
    Show full item record
    Abstract
    The purpose of this paper is to demonstrate the impacts of mobile battery and diesel DG in integrated electrical-heating networks for promoting the resilience, self-adequacy, load restoration, power quality as well as reducing the load shedding and operational cost. The case study is IEEE 33-bus electrical system with both the electrical and heating demands. Several buses of the grid are integrated with combined heat and power (CHP). The battery is moved between the buses hourly and the diesel DG is moved seasonally. The transfer time between origin and destination buses is considered in the given model. The electric network feeds three regions (i.e., three different loading patterns) including residential, industrial and agricultural areas where the major activity of the industrial loads is at night due to low energy price and the major activity of the agricultural loads is in the spring and summer. The outage of electricity and natural gas (NG) are two faults that are imposed on the network in order to evaluate the resilience and load restoration. The demand response program (DRP) is included in the model. Both the active and reactive powers are considered for battery, diesel DG and CHP. Several cases are simulated, studied and compared like fixed, mobile and mixed fixed-mobile locations for energy resources. The simulation results show that the proposed model reduces the total annual cost by 16.5% while the other costs such as purchased energy, NG and losses are reduced by 16.5%, 22.9% and 21.5%, respectively. The self-adequacy of network is increased by 2.5 h and the electrical-heating load restorations are increased by 36% and 38%, respectively. 2021 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.energy.2021.121195
    http://hdl.handle.net/10576/36360
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video