• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Zero Energy Building by Multicarrier Energy Systems including Hydro, Wind, Solar, and Hydrogen

    Thumbnail
    Date
    2021
    Author
    Mehrjerdi, Hasan
    Hemmati, Reza
    Shafie-khah, Miadreza
    Catalão, João P. S.
    Metadata
    Show full item record
    Abstract
    This article proposes a unified solution to address the energy issues in net-zero energy building (ZEB), as a new contribution to earlier studies. The multicarrier energy system, including hydro-wind-solar-hydrogen-methane-carbon dioxide-thermal energies is integrated and modeled in ZEB. The electrical sector is supplied by hydro-wind-solar, combined heat and power (CHP), and pumped hydro storage (PHS). The thermal sector is supplied by CHP, thermal boiler, and electric heating. The hydrogen storage system and Methanation process operate as the interface energy carriers between the electrical and thermal sectors. The carbon dioxide (CO2) of the ZEB is captured and fed into the Methanation process. The purpose is minimizing the released CO2 to the atmosphere while all the electrical-thermal load demands are successfully supplied considering events and disruptions. The model improves simultaneously the energy resilience and minimizes the environmental pollutions. The results demonstrate that the developed model reduces the CO2 pollution by about 33 451 kg per year. The model is a resilient energy system that can handle all failures of components. The model can efficiently handle 26% increment in the electrical loads and 110% increment in the thermal loads. 2005-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TII.2020.3034346
    http://hdl.handle.net/10576/36377
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video