• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reinforcement Learning Based EV Charging Management Systems-A Review

    Thumbnail
    View/Open
    Reinforcement_Learning_Based_EV_Charging_Management_SystemsA_Review.pdf (4.598Mb)
    Date
    2021-03-08
    Author
    Abdullah, Heba M.
    Gastli, Adel
    Ben-Brahim, Lazhar
    Metadata
    Show full item record
    Abstract
    To mitigate global warming and energy shortage, integration of renewable energy generation sources, energy storage systems, and plug-in electric vehicles (PEVs) have been introduced in recent years. The application of electric vehicles (EV) in the smart grid has shown a significant option to reduce carbon emission. However, due to the limited battery capacity, managing the charging and discharging process of EV as a distributed power supply is a challenging task. Moreover, the unpredictable nature of renewable energy generation, uncertainties of plug-in electric vehicles associated parameters, energy prices, and the time-varying load create new challenges for the researchers and industries to maintain a stable operation of the power system. The EV battery charging management system plays a main role in coordinating the charging and discharging mechanism to efficiently realize a secure, efficient, and reliable power system. More recently, there has been an increasing interest in data-driven approaches in EV charging modeling. Consequently, researchers are looking to deploy model-free approaches for solving the EV charging management with uncertainties. Among many existing model-free approaches, Reinforcement Learning (RL) has been widely used for EV charging management. Unlike other machine learning approaches, the RL technique is based on maximizing the cumulative reward. This article reviews the existing literature related to the RL-based framework, objectives, and architecture for the charging coordination strategies of electric vehicles in the power systems. In addition, the review paper presents a detailed comparative analysis of the techniques used for achieving different charging coordination objectives while satisfying multiple constraints. This article also focuses on the application of RL in EV coordination for research and development of the cutting-edge optimized energy management system (EMS), which are applicable for EV charging.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102632767&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2021.3064354
    http://hdl.handle.net/10576/36459
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video