• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An intelligent data uploading selection mechanism for offloading uplink traffic of cellular networks

    Thumbnail
    عرض / فتح
    An intelligent data uploading selection mechanism for offloading uplink traffic of cellular networks.pdf (1.022Mb)
    التاريخ
    2020-11-01
    المؤلف
    Wang, Qian
    Fang, Juan
    Gong, Bei
    Du, Xiaojiang
    Guizani, Mohsen
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Wi-Fi uploading is considered an effective method for offloading the traffic of cellular networks generated by the data uploading process of mobile crowd sensing applications. However, previously proposed Wi-Fi uploading schemes mainly focus on optimizing one performance objective: the offloaded cellular traffic or the reduced uploading cost. In this paper, we propose an Intelligent Data Uploading Selection Mechanism (IDUSM) to realize a trade-off between the offloaded traffic of cellular networks and participants’ uploading cost considering the differences among participants’ data plans and direct and indirect opportunistic transmissions. The mechanism first helps the source participant choose an appropriate data uploading manner based on the proposed probability prediction model, and then optimizes its performance objective for the chosen data uploading manner. In IDUSM, our proposed probability prediction model precisely predicts a participant’s mobility from spatial and temporal aspects, and we decrease data redundancy produced in the Wi-Fi offloading process to reduce waste of participants’ limited resources (e.g., storage, battery). Simulation results show that the offloading efficiency of our proposed IDUSM is (56.54 × 10−7), and the value is the highest among the other three Wi-Fi offloading mechanisms. Meanwhile, the offloading ratio and uploading cost of IDUSM are respectively 52.1% and (6.79 × 103). Compared with other three Wi-Fi offloading mechanisms, it realized a trade-off between the offloading ratio and the uploading cost.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85095740276&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/s20216287
    http://hdl.handle.net/10576/36485
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video