• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ML-Based Handover Prediction and AP Selection in Cognitive Wi-Fi Networks

    Thumbnail
    View/Open
    s10922-022-09684-2.pdf (1.398Mb)
    Date
    2022
    Author
    Khan, Muhammad Asif
    Hamila, Ridha
    Gastli, Adel
    Kiranyaz, Serkan
    Al-Emadi, Nasser Ahmed
    Metadata
    Show full item record
    Abstract
    Device mobility in dense Wi-Fi networks offers several challenges. Two well-known problems related to device mobility are handover prediction and access point selection. Due to the complex nature of the radio environment, analytical models may not characterize the wireless channel, which makes the solution of these problems very difficult. Recently, cognitive network architectures using sophisticated learning techniques are increasingly being applied to such problems. In this paper, we propose data-driven machine learning (ML) schemes to efficiently solve these problems in wireless LAN (WLAN) networks. The proposed schemes are evaluated and results are compared with traditional approaches to the aforementioned problems. The results report significant improvement in network performance by applying the proposed schemes. The proposed scheme for handover prediction outperforms traditional methods i.e. received signal strength method and traveling distance method by reducing the number of unnecessary handovers by 60% and 50% respectively. Similarly, in AP selection, the proposed scheme outperforms the strongest signal first and least loaded first algorithms by achieving higher throughput gains up to 9.2% and 8% respectively. 2022, The Author(s).
    DOI/handle
    http://dx.doi.org/10.1007/s10922-022-09684-2
    http://hdl.handle.net/10576/36629
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video