• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Applications of deep learning for phishing detection: a systematic literature review

    Thumbnail
    View/Open
    s10115-022-01672-x.pdf (2.616Mb)
    Date
    2022
    Author
    Catal, Cagatay
    Giray, Görkem
    Tekinerdogan, Bedir
    Kumar, Sandeep
    Shukla, Suyash
    Metadata
    Show full item record
    Abstract
    Phishing attacks aim to steal confidential information using sophisticated methods, techniques, and tools such as phishing through content injection, social engineering, online social networks, and mobile applications. To avoid and mitigate the risks of these attacks, several phishing detection approaches were developed, among which deep learning algorithms provided promising results. However, the results and the corresponding lessons learned are fragmented over many different studies and there is a lack of a systematic overview of the use of deep learning algorithms in phishing detection. Hence, we performed a systematic literature review (SLR) to identify, assess, and synthesize the results on deep learning approaches for phishing detection as reported by the selected scientific publications. We address nine research questions and provide an overview of how deep learning algorithms have been used for phishing detection from several aspects. In total, 43 journal articles were selected from electronic databases to derive the answers for the defined research questions. Our SLR study shows that except for one study, all the provided models applied supervised deep learning algorithms. The widely used data sources were URL-related data, third party information on the website, website content-related data, and email. The most used deep learning algorithms were deep neural networks (DNN), convolutional neural networks, and recurrent neural networks/long short-term memory networks. DNN and hybrid deep learning algorithms provided the best performance among other deep learning-based algorithms. 72% of the studies did not apply any feature selection algorithm to build the prediction model. PhishTank was the most used dataset among other datasets. While Keras and Tensorflow were the most preferred deep learning frameworks, 46% of the articles did not mention any framework. This study also highlights several challenges for phishing detection to pave the way for further research. 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
    DOI/handle
    http://dx.doi.org/10.1007/s10115-022-01672-x
    http://hdl.handle.net/10576/36777
    Collections
    • Computer Science & Engineering [‎2484‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video