• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A decision support system for automating document retrieval and citation screening

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S095741742100693X-main.pdf (2.507Mb)
    التاريخ
    2021
    المؤلف
    van Dinter, Raymon
    Catal, Cagatay
    Tekinerdogan, Bedir
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The systematic literature review (SLR) process includes several steps to collect secondary data and analyze it to answer research questions. In this context, the document retrieval and primary study selection steps are heavily intertwined and known for their repetitiveness, high human workload, and difficulty identifying all relevant literature. This study aims to reduce human workload and error of the document retrieval and primary study selection processes using a decision support system (DSS). An open-source DSS is proposed that supports the document retrieval step, dataset preprocessing, and citation classification. The DSS is domain-independent, as it has proven to carefully select an article's relevance based solely on the title and abstract. These features can be consistently retrieved from scientific database APIs. Additionally, the DSS is designed to run in the cloud without any required programming knowledge for reviewers. A Multi-Channel CNN architecture is implemented to support the citation screening process. With the provided DSS, reviewers can fill in their search strategy and manually label only a subset of the citations. The remaining unlabeled citations are automatically classified and sorted based on probability. It was shown that for four out of five review datasets, the DSS's use achieved significant workload savings of at least 10%. The cross-validation results show that the system provides consistent results up to 88.3% of work saved during citation screening. In two cases, our model yielded a better performance over the benchmark review datasets. As such, the proposed approach can assist the development of systematic literature reviews independent of the domain. The proposed DSS is effective and can substantially decrease the document retrieval and citation screening steps' workload and error rate. 2021 The Author(s)
    DOI/handle
    http://dx.doi.org/10.1016/j.eswa.2021.115261
    http://hdl.handle.net/10576/36808
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video