• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predictive maintenance using digital twins: A systematic literature review

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S0950584922001331-main.pdf (3.498Mb)
    التاريخ
    2022
    المؤلف
    van Dinter, Raymon
    Tekinerdogan, Bedir
    Catal, Cagatay
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Context: Predictive maintenance is a technique for creating a more sustainable, safe, and profitable industry. One of the key challenges for creating predictive maintenance systems is the lack of failure data, as the machine is frequently repaired before failure. Digital Twins provide a real-time representation of the physical machine and generate data, such as asset degradation, which the predictive maintenance algorithm can use. Since 2018, scientific literature on the utilization of Digital Twins for predictive maintenance has accelerated, indicating the need for a thorough review. Objective: This research aims to gather and synthesize the studies that focus on predictive maintenance using Digital Twins to pave the way for further research. Method: A systematic literature review (SLR) using an active learning tool is conducted on published primary studies on predictive maintenance using Digital Twins, in which 42 primary studies have been analyzed. Results: This SLR identifies several aspects of predictive maintenance using Digital Twins, including the objectives, application domains, Digital Twin platforms, Digital Twin representation types, approaches, abstraction levels, design patterns, communication protocols, twinning parameters, and challenges and solution directions. These results contribute to a Software Engineering approach for developing predictive maintenance using Digital Twins in academics and the industry. Conclusion: This study is the first SLR in predictive maintenance using Digital Twins. We answer key questions for designing a successful predictive maintenance model leveraging Digital Twins. We found that to this day, computational burden, data variety, and complexity of models, assets, or components are the key challenges in designing these models. 2022
    DOI/handle
    http://dx.doi.org/10.1016/j.infsof.2022.107008
    http://hdl.handle.net/10576/36810
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video